Spis tresci

Przedmowa 13
Podziekowania 17
O ksigzce 19

Rozdzial 1. Czym jest programowanie funkcyjne? 23

1.1. Czym jest programowanie funkcyjne? 24

1.2. Pisanie uzytecznych programéw bez efektéw ubocznych 26

1.3. W jaki sposéb transparentnosé referencyjna czyni program bezpieczniejszym? 28
14. Zalety programowania funkcyjnego 28

1.5. Wpykorzystanie modelu z zastgpowaniem do rozumowania na temat programu 30
1.6. Zastosowanie zasad funkcyjnych na prostym przykladzie 31

1.7. Osigganie limitéw abstrakcji 36

1.8. Podsumowanie 37

Rozdzial 2. Uzycie funkcji w jezyku Java 39
2.1. Czym jest funkcja? 40
2.1.1. Funkcje w $wiecie rzeczywistym 40
2.2. Funkcje w Javie 45
2.2.1. Metody funkcyjne 45
2.2.2. Interfejsy funkcyjne Javy i klasy anonimowe 50
2.2.3. Zlozenie funkcji 52
2.2.4. Funkcje polimorficzne 52
2.2.5. Upraszczanie kodu za pomocq funkcji anonimowych 53
2.3. Zaawansowane funkcjonalnosci funkcji = 55
2.3.1. Co z funkcjami dotyczgcymi kilku argumentow? 56
2.3.2. Zastosowanie funkcji z czegsciowym rozwinigciem 57
2.3.3. Funkcje wyzszego rzedu 57
2.3.4. Polimorficzne funkcje wyzszego rzedu 58
2.3.5. Uszycie funkcji anonimowych 61
2.3.6. Funkcje lokalne 63
2.3.7. Domknigcia 64
2.3.8. Czesciowe zastosowanie funkcji i automatyczne rozwijanie 66
2.3.9. Zamiana argumentéw czesciowo zastosowanych funkeji 70
2.3.10. Funkcje rekurencyjne 71
2.3.11. Funkcja tozsamosciowa 73
2.4. Interfejsy funkcyjne Javy 8 74
2.5. Debugging funkcji anonimowych 75
2.6. Podsumowanie 78

Spis tresci

Rozdzial 3. Uczynidé Jave bardziej funkcyjng 79

3.1
3.2.

3.3.

34.

3.5.

Zamiana standardowych struktur sterujgcych na ich funkcyjne odpowiedniki
Abstrakcja struktur sterujagcych 81

3.2.1. Caysaczenie kodu 85

3.2.2. Alternatywa dla if ... else 88

Abstrakcja iteracji 92

3.3.1. Abstrakcja operacji na liscie dzigki odwzorowaniu 94
3.3.2. Tworzenie list 95

3.3.3. Wykorzystanie operacji dotyczqgcych glowy i ogona 96
3.3.4. Funkcyjne dodawanie do listy 97

3.3.5. Redukcja i zwijanie list 97

3.3.6. Kompozycja odwzorowan i mapowanie kompozycji 103
3.3.7. Stosowanie efektow dla list 104

3.3.8. Funkcyjne podejscie do danych wyjsciowych 105

3.3.9. Budowanie list referencji odwrotnych 106
Zastosowanie wlasciwych typow 109

3.41. Problemy ze standardowymi typami 109

3.4.2. Definiowanie typow wartosci 112

3.4.3. Prayszlosé typéw wartosci w Javie 115

Podsumowanie 115

Rozdzial 4. Rekurencja, rekurencja odwrotna i memoizacja 117

4.1.

4.2.

4.3.
44.

4.5.

Réznice miedzy rekurencjg i rekurencja odwrotng 118

4.1.1. Przyklad z dodawaniem dla obu rodzajéow rekurencji 118
4.1.2. Implementacja rekurencji w Javie 119

4.1.3. Wykorzystanie eliminacji wywolania ogonowego 119
4.1.4. Usycie funkcji i metod z rekurencjq ogonowq 120

4.1.5. Abstrakcja rekurencji 120

4.1.6. Utworzenie wersji zapewniajgcej prostq podmiang metody rekurencyjnej

bazujqcej na stosie 124
Stosowanie funkcji rekurencyjnych 126
4.2.1. Korzystanie z lokalnie zdefiniowanych funkcji 127
4.2.2. Zapewnienie funkcji dzialajgcych jako rekurencje ogonowe 128
4.2.3. Funkcje podwdjnie rekurencyjne — cigg Fibonacciego 128
4.2.4. Zamiana metod dla list na wersje rekurencyjne i bezpieczne dla stosu
Kompozycja ogromnej liczby funkeji 134
Korzystanie z memoizacji 137
4.4.1. Memoizacja w programowaniu imperatywnym 137
4.4.2. Memoizacja w funkcjach rekurencyjnych 138
4.4.3. Memoizacja automatyczna 140
Podsumowanie 146

Rozdzial 5. Obstuga danych przy uzyciu list 147

5.1

Jak klasyfikowaé kolekcje danych? 147

5.1.1. Rézne rodzaje list 148

5.1.2. Wzgledna oczekiwana wydajnoscé listy 149

5.1.3. Wymiana czasu na zajetosé pamieci lub czasu kontra ztozonosé 150

80

131

5.2.
5.3.

5.4.

5.5.

Spis tresci

5.1.4. Modyfikacja na miejscu 151

5.1.5. Trwale struktury danych 152

Implementacja niezmiennej, trwalej listy jednokierunkowej 153
Wspéldzielenie danych w operacjach na liscie 156

5.3.1. Dodatkowe operacje na liscie 158

Wykorzystanie rekurencji do zwijania list za pomocg funkcji wyzszego rzedu
5.4.1. Bazujqca na stercie, rekurencyjna wersja foldRight 169

5.4.2. Odwzorowanie i filtrowanie list 171

Podsumowanie 173

Rozdziat 6. Obstuga danych opcjonalnych 175

6.1.
6.2.
6.3.

6.4.

6.5.
6.6.

Problemy ze wskaznikiem null 176

Alternatywy dla referencji null 177

Typ danych Option 180

6.3.1. Pobranie wartosci z Option 182

6.3.2. Stosowanie funkcji dla wartosci opcjonalnych 184
6.3.3. Kompozycja obiektow Option 185

6.3.4. Sposoby uzycia Option 187

6.3.5. Inne sposoby lgczenia opcji 191

6.3.6. Kompozycja List z Option 193

Roézne narzedzia dodatkowe dla Option 195

6.4.1. Testowanie, czy to Some, czy None 195
6.4.2. Implementacja metod equals i hashcode 195
Jak i gdzie uzywaé Option? 196

Podsumowanie 199

Rozdzial 7. Obstuga bledow i wyjgtkéw 201

7.1.
7.2.

7.3.

7.4.
7.5.

7.6.

Problemy do rozwigzania 201

Typ Either 203

7.2.1. Kompozycja klasy Either 204

Typ Result 206

7.3.1. Dodawanie metod do klasy Result 207
Wzorce Result 209

Zaawansowana obstuga Result 216

7.5.1. Stosowanie predykatow 216

7.5.2. Mapowanie porazek 217

7.5.3. Dodanie metod fabrycznych 220

7.5.4. Stosowanie efektow 221

7.5.5. Zaawansowana kompozycja wynikéw 224
Podsumowanie 227

Rozdzial 8. Zaawansowana obstuga list 229

8.1.

Problem z length 230

8.1.1. Problem wydajnosci 230
8.1.2. Zalety memoizacji 231
8.1.3. Wady memoizacji 231
8.1.4. Faktyczna wydajnosé¢ 233

163

8.2.

8.3.

8.4.

8.5.

Spis tresci

Kompozycja List i Result 233

8.2.1. Metody List zwracajgce Result 233

8.2.2. Konwersja z List<Result> na Result<List> 235
Abstrakcja typowych operacji na listach 238

8.3.1. Zszywanie i rozszywanie list 238

8.3.2. Dostep do elementéw na podstawie ich indekséw 241
8.3.3. Duzielenie list 243

8.3.4. Poszukiwanie podlist 247

8.3.5. Rdznorakie funkcje dotyczqce obslugi list 248
Automatyczne przetwarzanie réwnolegle list 251

8.4.1. Nie wszystkie obliczenia moina zréwnoleglic 251
8.4.2. Podzial listy na podlisty 252

84.3. Zrownoleglone przetwarzanie podlist 253
Podsumowanie 255

Rozdzial 9. Wykorzystywanie leniwosci obliczern 257

9.1.

9.2.
9.3.
9.4.
9.5.

9.6.

9.7.
9.8.
9.9.

Zrozumie¢ rygor i lenistwo 258

9.1.1. Java jest jezykiem rygorystycznym 258
9.1.2. Problem z rygorem 259

Implementacja wersji leniwej 261

Rzeczy, ktérych nie wykonamy bez lenistwa 262
Dlaczego nie uzyjemy klasy Stream z Javy 87 263
Tworzenie struktury danych dla leniwej listy 263
9.5.1. Memoizacja wyliczonych wartosci 265
9.5.2. Modyfikacja strumienia 268

Prawdziwa esencja lenistwa 271

9.6.1. Zwijanie strumieni 273

Obsluga strumieni nieskoniczonych 278
Unikanie referencji null i modyfikowalnych pél 280
Podsumowanie 282

Rozdzial 10. Obsluga danych za pomocq drzew 285

10.1.

10.2.
10.3.
10.4.
10.5.

Drzewo binarne 286

10.1.1. Drzewa zréwnowazone i niezbalansowane 287

10.1.2. Rozmiar, wysokosé i glebia 287

10.1.3. Drzewa lisciaste 288

10.1.4. Uporzqdkowane drzewa binarne lub tez drzewa binarne wyszukiwania
10.1.5. Kolejnosé wstawiania 289

10.1.6. Kolejnosé przejscia przez drzewo 290
Implementacja drzewa binarnego 292

Usuwanie elementéw z drzew 298

Laczenie dowolnych drzew 300

Zwijanie drzewa 304

10.5.1. Zwijanie za pomocq dwéch funkcji 305
10.5.2. Zwijanie za pomocq jednej funkcji 307
10.5.3. Ktérq implementacje zwinigcia wybraé? 308

288

Spis tresci

10.6. Odwzorowanie drzew 310
10.7. Roéwnowazenie drzew 311
10.7.1. Obracanie drzew 311
10.7.2. Réwnowazenie drzew za pomocq algorytmu Day-Stout-Warren 314
10.7.3. Automatycznie réwnowazqce sie drzewa 315
10.7.4. Rozwigzywanie wlasciwego problemu 316
10.8. Podsumowanie 317

Rozdzial 11. Rozwigzywanie rzeczywistych probleméw pray uzyciu
zaawansowanych drzew 319

I1.1. Lepsza wydajnos¢ i bezpieczenstwo stosu dzigki samobalansujacym sie drzewom
11.1.1. Prosta struktura drzewa 320
11.1.2. Wstawianie elementu do drzewa czerwono-czarnego 325
11.2. Przyklad uzycia-drzew czerwono-czarnych — mapowanie 330
11.2.1. Implementacja klasy Map 330
11.2.2. Rozbudowania klasy Map 333
11.2.3. Uzycie klasy Map dla kluczy bez mozliwosci poréwnywania 334
11.3. Implementacja funkcyjnej kolejki priorytetowej 336
11.3.1. Protokdt dostgpowy dla kolejki priorytetowej 336
11.3.2. Sposoby uzycia kolejek priorytetowych 337
11.3.3. Wymagania implementacyjne 337
11.3.4. Struktura danych nazywana kopcem lewostronnym 338
11.3.5. [Implementacja kopca lewostronnego 338
11.3.6. Implementacja interfejsu praypominajgcego kolejke 343
11.4. Kolejka priorytetowa dla elementéw bez mozliwosci poré6wnywania 344
11.5. Podsumowanie 349

Rozdzial 12. Obstuga zmian stanu w sposéb funkcyjny 351

12.1. Funkcjonalny generator liczb losowych 352

12.1.1. Interfejs generatora liczb losowych 353

12.1.2. Implementacja generatora liczb losowych 354
12.2. Ogolne API do obstugi stanu 357

12.2.1. Korzystanie z operacji na stanie 358

12.2.2. Kompozycja operacji na stanie 359
12.3. Ogolna obstuga stanu 363

12.3.1. Wzorce stanu 364

12.3.2. Tworzenie maszyny stanowej 365

12.3.3. Kiedy korzystac ze stanu i maszyny stanowej 370
12.4. Podsumowanie 371

Rozdzial 13. Funkcyjne wejscie-wyjscie 373

13.1. Stosowanie efektow w kontekscie 374
13.1.1. Czym sq efekty? 374
13.1.2. Implementacja efektéow 375
13.1.3. Bardziej uzyteczne efekty dla porazek 377

320

10 Spis tresci

13.2. Odczyt danych 380
13.2.1. Odczyt danych z konsoli 380
13.2.2. Odczyt danych z pliku 384
13.2.3. Testowanie z zadanymi danymi wejsciowymi 386
13.3. Naprawde funkcyjne wejscie-wyjscie 387
13.3.1. W jaki sposob zapewnié pelng funkcyjnosé wejscia-wyjscia? 387
13.3.2. Implementacja w pelni funkcyjnego wejscia-wyjscia 388
13.3.3. Egczenie operacji wejscia-wyjscia 389
13.3.4. Obsluga wejscia za pomocg IO 390
13.3.5. Rozszerzanie typu IO 393
13.3.6. Uczynienie typu 10 bezpiecznym dla stosu 395
13.4. Podsumowanie 400

Rozdzial 14. Wspéldzielenie zmiennego stanu przy uzyciu aktoréw 401

14.1. Model aktora 402
14.1.1. Asynchroniczne komunikaty 403
14.1.2. Obsluga zréwnoleglenia 403
14.1.3. Obsluga zmiany stanu aktora 404
14.2. Budowanie frameworka aktora 405
14.2.1. Ograniczenia prezentowanego frameworka aktora 405
14.2.2. Projektowanie interfejséw frameworka aktoréw 405
14.2.3. Implementacja AbstractActor 407
14.3. Zmuszenie aktoréow do dziatlania 408
14.3.1. Implementacja przykladu z ping-pongiem 409
14.3.2. Bardziej powazny przyklad — réwnolegle wykonywanie obliczern 410
14.3.3. Zmiana kolejnosci wynikéw 415
14.3.4. Rozwigzanie problemu wydajnosci 418
14.4. Podsumowanie 423

Rozdzial 15. Rozwigzywanie typowych probleméw w sposéb funkcyjny 425

15.1. Wykorzystanie asercji do walidacji danych 426
15.2. Odczyt wlasciwosci z pliku =~ 430
15.2.1. Wezytywanie pliku wlasciwosci 430
15.2.2. Odczyt wlasciwosci jako tekstu 431
15.2.3. Tworzenie lepszych komunikatéw o bledzie 432
15.2.4. Odczyt wlasciwosci jako listy 435
15.2.5. Odczytywanie wyliczenn 436
15.2.6. Odczyt wlasciwosci dowolnych typéw 437
15.3. Konwersja programu imperatywnego — czytnik plikow XML 440
15.3.1. Zebranie potrzebnych funkcji 441
15.3.2. Kompozycja funkcji i stosowanie efektu 442
15.3.3. Implementacja funkcji 443
15.3.4. Uczynienie programu nawet bardziej funkcyjnym 444
15.3.5. Rozwiqzanie problemu z typem argumentu 448
15.3.6. Zmiana funkcji przetwarzajqcej element na parametr 449
15.3.7. Obstuga blgdéw dla nazw elementéw 450
15.4. Podsumowanie 451

~

Spis tresci

Dodatek A. Wykorzystanie elementéw funkcyjnych Javy 8 453

Al
A2,

Klasa Optional 454
Strumienie 455

Dodatek B. Monady 461

Dodatek C. Co dalej? 467

C.L

C.2.

C.3.

Wybér nowego jezyka 467

C.1.1. Haskell 467

C.1.2. Scala 468

C.1.3. Kotlin 468

C.1.4. Frege 469

C.1.5. A co z dynamicznie typowanymi jezykami funkcyjnymi? 469
Pozostanie z Javg 469

C.2.1. Functional Java 470

C.2.2. Javaslang 470

C.2.3. Cyclops 470

C.2.4. Inne biblioteki funkcyjne 471
Dodatkowe lektury 471

Skorowidz 473

11

	okladki_kupno2-00390
	okladki_kupno2-00391 - Kopia
	okladki_kupno2-00391
	okladki_kupno2-00392 - Kopia
	okladki_kupno2-00392
	okladki_kupno2-00393 - Kopia
	okladki_kupno2-00393

