Spis tresci

Przedmowa

Podziekowania

O ksigzce

O autorze

9
11
13
17

CZESC I. MYSL FUNKCY]JNIE .cceueteesseseessessessesssssssssessessassessesssessssessessessessesss 19

Rozdzial 1. Przechodzenie na model funkcyjny

1.1
1.2.

1.3.

1.4.

Czy programowanie funkcyjne moze byé pomocne?

Czym jest programowanie funkcyjne?

1.2.1. Programowanie funkcyjne jest deklaratywne

L1.2.2. Czyste funkcje i problemy z efektami ubocznymi

1.2.3. Przejrzystosc referencyjna i mozliwosé podstawiania
1.2.4. Zachowywanie niemodyfikowalnosci danych

Zalety programowania funkcyjnego

L3.1. Ulatwianie podziatu zlozonych zadas

1.3.2. Przetwarzanie danych za pomocq plynnych taricuchéw wywotan
1.3.3. Radzenie sobie ze zlozonosciq aplikacji asynchronicznych
Podsumowanie

Rozdzial 2. Operacje wyzszego poziomu w JavaScripcie

2.1.
2.2.

2.3.

2.4.

2.5.

Dlaczego JavaScript?

Programowanie funkcyjne a programowanie obiektowe

2.2.1. Zarzqdzanie stanem obiektéw w JavaScripcie

2.2.2. Traktowanie obiektéw jak wartosci

2.2.3. Glegbokie zamrazanie potencjalnie zmiennych elementéw
2.2.4. Poruszanie sig po grafach obiektow i ich modyfikowanie za pomocq soczewek
Funkcje

2.3.1. Funkcje jako pelnoprawne obiekty

2.3.2. Funkcje wyzszego poziomu

2.3.3. Sposoby uruchamiania funkcji

2.3.4. Metody uzywane dla funkcji

Domknigcia i zasieg

2.4.1. Problemy z zasiggiem globalnym

2.4.2. Zasigg funkcji w JavaScripcie

2.4.3. Zasigg pseudobloku

2.4.4. Praktyczne zastosowania domknigé

Podsumowanie

21

23
24
26
27
31
33
34
34
36
38
40

41

42
42
49
49
52
54
56
56
57
59
61
62
64
65
66
67
70

Spis tresci

CzESC II. WKROCZ W SWIAT PROGRAMOWANIA FUNKCYJNEGO ...covvinranen 71

Rozdzial 3. Niewielka liczba struktur danych i wiele operacji

3.1.
3.2.
3.3.

3.4.

3.5.

3.6.

Przeplyw sterowania w aplikacji

Laczenie metod w fanicuch

L.aczenie funkeji w tanicuch

3.3.1. Wyrazenia lambda

3.3.2. Przeksztalcanie danych za pomocq operacji _.map

3.3.3. Pobieranie wynikéw za pomocq operacji _.reduce

3.3.4. Usuwanie niepotrzebnych elementéw za pomocq funkcji _filter
Analizowanie kodu

3.4.1. Deklaratywne laricuchy funkcji w podejsciu leniwym

3.4.2. Dane w formacie podobnym do SQL-owego — traktowanie funkcji jak danych

Naucz sie mysleé rekurencyjnie

3.5.1. Czym jest rekurencja?

3.5.2. Jak nauczyé sig¢ mysle¢ rekurencyjnie?

3.5.3. Rekurencyjnie definiowane struktury danych
Podsumowanie

Rozdzial 4. W kierunku modularnego kodu do wielokrotnego uzytku

4.1.

4.2.

4.3.

4.4.

4.5.

4.6.

4.7.

Lancuchy metod a potoki funkeji

4.1.1. Egczenie metod w taricuchy

4.1.2. Porzqdkowanie funkcji w potoku

Wymogi dotyczace zgodnosci funkcji

4.2.1. Funkcje zgodne ze wzgledu na typ

4.2.2. Funkcje i arno$é — argument na rzecz stosowania krotek
Przetwarzanie funkcji z rozwijaniem

4.3.1. Emulowanie fabryk funkcji

4.3.2. Tworzenie przeznaczonych do wielokrotnego uzytku szablonéw funkcji
Czesciowe wywolywanie funkcji i wigzanie parametrow

4.4.1. Rozszerzanie podstawowego jezyka

4.4.2. Wigzanie funkcji wykonywanych z opéznieniem

Tworzenie potokéw funkeji za pomocg kompozycji

4.5.1. Kompozycja na przykladzie kontrolek HTML-owych

4.5.2. Kompozycja funkcyjna — oddzielenie opisu od przetwarzania
4.5.3. Kompozycja z uzyciem bibliotek funkcyjnych

4.5.4. Radzenie sobie z kodem czystym i nieczystym

4.5.5. Wprowadzenie do programowania bezargumentowego
Zarzadzanie przeplywem sterowania z uzyciem kombinatoréw funkcji
4.6.1. Kombinator identity

4.6.2. Kombinator tap

4.6.3. Kombinator alt

4.6.4. Kombinator seq

4.6.5. Kombinator fork

Podsumowanie

73

74
75
76
77
78
80
84
85
86
90
91
92
92
95
98

99

100
101
102
103
103
104
107
110
111
113
115
115
116
117
118
121
123
124
126
126
126
127
128
128
130

Spis tresci

Rozdzial 5. Wzorce projektowe pomagajqgce radzié sobie ze zlozonoscig

5.1.

5.2.

5.3.

5.4.
5.5.

Wady imperatywnej obstugi bledéw

5.1.1. Obstuga blgdéw za pomocq blokéw try-catch

5.1.2. Dlaczego w programach funkcyjnych nie nalezy zglaszac wyjgtkow?
5.1.3. Problemy ze sprawdzaniem wartosci null

Budowanie lepszego rozwigzania — funktory

5.2.1. Opakowywanie niebezpiecznych wartosci

5.2.2. Funktory

Funkceyjna obstuga bledéw z uzyciem monad

5.3.1. Monady — od przeplywu sterowania do przeplywu danych
5.3.2. Obstuga blgdéw za pomocq monad Maybe i Either

5.3.3. Interakcje z zewngtrznymi zasobami przy uzyciu monady 10
Monadyczne lanicuchy i kompozycje

Podsumowanie

CZzESC II1. ROZWIJANIE UMIEJETNOSCI W ZAKRESIE
PROGRAMOWANIA FUNKCYJNEGO ..ucciereresesssercesaseseseeranannaseenes 16D

Rozdzial 6. Zabezpieczanie kodu przed bledami

6.1.
6.2.

6.3.

6.4.
6.5.

6.6.

Wplyw programowania funkcyjnego na testy jednostkowe

Problemy z testowaniem programéw imperatywnych
6.2.1. Trudnosé identyfikowania i wyodrebniania zadan

6.2.2. Zaleznosé od wspoluzytkowanych zasobéw prowadszi do niespéjnych wynikéw

6.2.3. Zdefiniowana kolejnosé wykonywania operacji

Testowanie kodu funkcyjnego

6.3.1. Traktowanie funkcji jak czarnych skrzynek

6.3.2. Koncentracja na logice biznesowej zamiast na przeplywie sterowania

6.3.3. Oddzielanie czystego kodu od nieczystego za pomocq monadycznej izolacji

6.3.4. Tworzenie atrap zewngtrznych zaleznosci
Przedstawianie specyfikacji w testach opartych na cechach
Pomiar efektywnosci testéw na podstawie pokrycia kodu
6.5.1. Pomiar efektywnosci testéw kodu funkcyjnego

6.5.2. Pomiar zlozonosci kodu funkcyjnego

Podsumowanie

Rozdzial 7. Optymalizacje funkcyjne

7.1.

7.2.

7.3.

Praca funkcji na zapleczu

7.1.1. Rozwijanie funkcji a kontekst funkcji na stosie

7.1.2. Wyzwania zwigzane z kodem rekurencyjnym

Odraczanie wykonywania funkcji za pomocg leniwego wartosciowania
7.2.1. Unikanie obliczen dzigki kombinatorowi funkcyjnemu alt

7.2.2. Wykorzystanie syntezy wywolan

Wywolywanie kodu wtedy, gdy jest potrzebny

7.3.1. Memoizacja

7.3.2. Memoizacja funkcji o duzych wymaganiach obliczeniowych

131

132
132
133
134
135
136
138
140
141
145
154
157

163

167

168
169
170
171
172
173
173
174
176
178
180
186
187
190
193

195

196
198
200
202
203
204
206
207
207

Spis tresci

7.3.3. Wykorzystanie rozwijania funkcji i memoizacji
7.3.4. Dekompozycja w celu zastosowania memoizacji do maksymalnej
liczby komponentow
7.3.5. Stosowanie memoizacji do wywolan rekurencyjnych
7.4. Rekurencja i optymalizacja wywolan ogonowych
7.4.1. Przeksztalcanie wywolan nieogonowych w ogonowe
7.5. Podsumowanie

Rozdzial 8. Zarzqdzanie asynchronicznymi zdarzeniami i danymi

8.1. Problemy zwigzane z kodem asynchronicznym
8.1.1. Tworzenie zwigzanych z czasem zaleznosci migdzy funkcjami
8.1.2. Powstawanie piramidy wywolarn zwrotnych
8.1.3. Styl oparty na przekazywaniu kontynuacji
8.2. Pelnoprawne operacje asynchroniczne oparte na obietnicach
8.2.1. Eanicuchy metod wykonywanych w przyszlosci
8.2.2. Kompozycja operacji synchronicznych i asynchronicznych
8.3. Leniwe generowanie danych
8.3.1. Generatory i rekurencja
8.3.2. Protokdél iteratoréw
8.4. Programowanie funkcyjne i reaktywne z uzyciem biblioteki Rx]S
8.4.1. Dane jako obserwowalne sekwencje
8.4.2. Programowanie funkcyjne i reaktywne
8.4.3. RxJS i obietnice
8.5. Podsumowanie

Dodatek. Biblioteki JavaScriptu uzywane w ksigzce

Skorowidz

210

211
212
213
215
218

219

220
221
222
224
227
230
235
237
239
241
242
242
243
246
246

249

253

	okladki_kupno-0217
	okladki_kupno-0218 - Kopia
	okladki_kupno-0218
	okladki_kupno-0219

